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New bounds on the number of bound states 
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Orsay, France 
t CERN, CH 1211, Geneva 23, Switzerland 
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Abstract. We present methods for binding the number of bound states which allow us to 
take into account oscillations of the potential. Previous results for a particular angular 
momentum and for levels below a certain energy are also improved. 

1. Introduction 

There now exist many kinds of estimates on the number of bound states for a given 
potential with and without spherical symmetry (Bargmann 1952, Birman 1961, 1966, 
Schwinger 1961, Glaser et a1 1976, Chadan 1976, Chadan and Martin 1977, Rosen- 
blum 1972, Cwickel 1977, Lieb 1976, 1979, Ghirardi and Rimini 1965), as well as 
sufficient conditions for the existence of such states (Calogero 1965, Chadan and 
Martin 1980, Chadan 1980). In these estimates usually either the attractive part of 
the potential or its absolute value enters. 

In § 2 we formulate the problem in such a way as to take into account oscillations 
of the potential, something which has not been done so far. For this purpose we 
introduce the following integral of the potential for the spherically symmetric case: 

W,(r) = - dta2( t )V( t )  JrX 
where a(t)  will be chosen in a suitable way and W,(r) for v = 1 has already been 
used in scattering theory (Baeteman and Chadan 1976), as well as for the bound state 
problem. Then, by making a special transformation, we arrive at an equivalent 
problem, as far as the number of bound states is concerned (i.e. the number of nodes 
of the zero-energy wavefunctions), such that the new potential turns out to be 
everywhere attractive, whatever the sign of the starting potential may be. We then 
see that one can apply all estimates mentioned above, some of which are rather good, 
to this equivalent potential. In a simple example we shall see that our estimates give 
a large improvement over old results. 

In the third part we transform the Schrodinger equation into an integral equation 
with a symmetric kernel. Applying standard Birman-Schwinger techniques allows us 
to improve known results in two cases. On the one hand, an estimate on the number 
of bound states for a particular angular momentum also suitable for oscillating 
potentials is derived; on the other hand, states below a certain energy are estimated. 
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2. Bounds for oscillating potentials 

Let us start with the Schrodinger equation for a spherically symmetric potential; the 
reduced wavefunction for a bound state with energy - y 2  and angular momentum 1 
satisfies 

where V(r)  should be such that W,(r) defined in (1) satisfies, for a = 1, 

W ( r )  = Wu=l(r)  EL ' ( [o ,  00)) rW(r)lr=O,m = 0. (3) 

It has been shown (Baeteman and Chadan 1976) that the whole of scattering theory 
(including the bound state problem), which works under the old Bargmann-Jost- 
Kohn-Levinson condition 

rV(r) E ~ ' ( [ o ,  00) )  (4) 
also works under the more general requirements (3). However, in this paper we shall 
keep (4) and leave the more general case for a future publication. Next we introduce 

and make the following change of variables: 

z ( r )  = Io' dt f 2 ( t )  exp(2UU(t)) ~ u ( z )  = [a-*(r) ex~(~u(r))cp(r)II ,=r(z ,  (6) 

where we take a(r)  to be the solution of 

Y Z O ,  u ( r )  # 0 
d2 1(1+1) 

(7) 

where HI" is the Hankel function (Erdelyi 1953). Indeed, it is known that a ( r )  is 
real and does not vanish for r 3 0, y 2 0, I > - 5  (Erdelyi 1953, see p 62), and we have 

Note also that lu(r)l is a decreasing function of r (it is infinite at the origin and zero 
at r = CO) as can be seen from the definition of the Hankel function for I = 1 ,2 ,  . . . 
(Erdelyi 1953). 

Under (6), equation (2) transforms into 

Notice, first of all, that the change of variables from r to z is a C 2  bijection and 
maps the interval [0, a) to [0, 00). Furthermore, it follows from the definition of & ( z )  
(equation (6)) that the nodes of &(z) and of q ( r )  correspond to each other. Therefore 
the number of bound states below energy - y 2  of the original problem is equal to the 
number of nodes of I + + ~ ( Z ) .  
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However, the surprising feature of equation (10) is that the new potential c u ( z )  
which enters is purely attractive. Moreover, using the monotonicity of la(r)l as a 
function of r mentioned above, one can prove (see the appendix) that condition (4), 
that is to say finiteness of the integral 

I = JOm dr r /  V(r)l <CO, (1 1) 

implies finiteness of the integral 

J = Jom dz z 1 Pu ( z  ) 1 < CO. 

This means that (10) is a good radial Schrodinger equation in z for the s wave at 
zero energy with a purely attractive potential satisfying the Bargmann condition. This 
makes it clear that we can apply old results to (10) (and therefore to (2)) without 
being forced to throw out the repulsive part of the potential. So, for instance, we 
have the bounds on the number of bound states n l ( y )  for angular momentum I below 
energy - y 2  (Glaser et ai 1976): 

where a(r) entering in the transformation (6) is given by (8). 

I = 0 which means a(r) = 1. 

Example. Two &function potentials. Let 

To check the improvement over old results, we examine an example for y = 0, 

V ( r )  = aS(r - r d + P S ( r  - r 2 )  rI = 1, r2 =2.  (14) 
Then it is trivial to obtain regions in the ( a , P )  plane for which we have no bound 
states (respectively, one or two states). In order to apply (13) ,  we have to calculate 
the new potential and work out the change of variables from r to z ; we obtain 

I o  
where the constants are given by 

The new variable clearly becomes asymptotically equal to r : 

O s r s l  
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In table 1 (respectively, table 2) we compare the naive estimate by taking 

1 V(r)l- = e(- V(r))l V(r)l (18) 

and using the Bargmann bound ( p  = 1 in equation (13)) with results obtained with 
the help of cu(z) and taking p = 1 or 1. First, we fix a (respectively, p )  such that the 
first bound state appears. Then, using equation (13), we have determined bounds on 
p (respectively, a )  such that the number of bound states is zero. As expected, we 
obtain a large improvement over the naive estimates; the difference between our 
bounds and the exact results is of the order of a few per cent. 

Table 1. The question of excluding bound states for the potential of equation (14) is 
studied. We fix a and determine the exact value of p such that there is a zero-energy 
resonance (peXact). Next we determine a bound on p excluding bound states, by taking 
the naive estimate of equation (18) and using Bargmann's result ( p  E 1 in equation (13)). 
These &, are compared with the improved bounds by using V,(z) from equation 
(15) and takingp = 1 or;  in equation (13). 

-0.50 -0.333 -0.250 -0.310 1 
-0.25 -0.429 -0.375 -0.408 1 

0.25 -0.556 -0.500 -0.544 1 
0.50 -0.600 -0.500 -0.590 1 
0.75 -0.636 -0.500 -0.624 1 
1 .oo -0.667 -0.500 -0.646 1 

~ 

Table 2. The same as in table 1 but /3 is fixed first and a values are determined. 

-0.25 -0.667 -0.5 -0.622 1 
0.25 -1.200 -1.0 -1.158 1 
0.50 -1.333 -1.0 -1.270 1 
0.75 -1.429 -1.0 -1.368 
1.00 -1.500 -1.0 -1.411 

Remark. Clearly the transformation (6) can be applied to the energy functional; one 
obtains 

(19) 

Only in the case where ( a ( r )  exp(-Uu(r))lr=r,z,c 1 is there a relation between the 
eigenvalues of the old problem and the eigenvalues of the operator 

5," dz{(d lL, /d~)~-[a~(r )  ~ X P ( - ~ ~ ~ ( ~ ) ) W ~ ( ~ ) I ~ ~ = ~ ~ ~ ~ ~ ~ ~ ( Z ) ~ ~ }  
E(*,) = 2 5," d z b 4 ( r )  ~ x P ( - ~ u ~ ( ~ ) ) I I ~ = ~ ~ ~ ~ I ~ ~ ( ~ ) I  

-d2/dz2 + c,(z) on L2([0, 00)).  (20) 

3. Bounds for angular momentum states below some energy 

In this section we shall show how to generalise to higher angular momentum and to 
negative energy some necessary conditions (Chadan 1976, Chadan and Martin 1977), 
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as well as sufficient ones (Chadan 1980), found previously. To this end, we start from 
the equation 

u(0 )  = o  (21) 

where w(r) and p ( r )  will be chosen later and u ( r )  will be related to the solution of 
the Schrodinger equation (27). If we now define 

- ( ~ + w ( r ) ) u ' ( r ) ( b - w ( r , ) U  d (r)  = (+2(r)p (r)u(r)  r 

u(r) --w(r) u ( r ) =  w ( r )  (22) id", ) 
we can easily invert equation (22) and get 

Using (23) we can transform the differential equation (21) into the integral equation 

w (r)  = ds K"'(r, s)w (s) IoX 
with a symmetric kernel 

(24) 

It'is also easily seen that if p ( t )  3 0 this kernel K"' is positive definite. 

equation (8). Under the substitution 
Let us now specify U, w and p to particular cases. To do so we take U from 

u ( r )  =u - ' ( r )d ( r )  (26) 
the differential equation (21) becomes a Schrodinger equation for energy - y 2  and 
angular momentum I :  

Let p (r)  = - V(r) and take w to be a solution of 

(28) w ' + w  2 + - w = o  2u' w -1 ( r )  =u2(r) J rdru-2( r ) .  
U 

In the case when V is purely attractive, we now apply the Birman-Schwinger argument 
to equation (24) and obtain a bound on the number of bound states with angular 
momentum I below the energy - y 2 ,  nr(y), of the form 

In the case where V has no definite sign, we can iterate (24) once and use this 

nr(y) s T r  K'2' .  (30) 
According to the Birman-Schwinger principle (Thirring 1981) nr(y) is given by 

the number of characteristic values gi of K which are smaller than one. For purely 

iterated kernel K'2' which is now positive to get 
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attractive potentials one observes that the condition 

T r K ' 2 ' z T r K ( 1 ) ( J x  g;' g;' gt > o  
I 1 

implies the existence of at least one such value less than one; therefore (31) is a 
sufficient condition for the existence of bound states (Chadan 1980). If V changes 
sign K"' need not be positive, so we have to use 

(32) Tr K'4' 3 Tr K'2 ' .  
Let us quote two particularly interesting cases of the bounds given above. 

( a )  For 1 = 0, ~ ( r )  = exp(-yr), we get w ( r )  = 2y 
00 

no(y) s Tr K"' = lom dr exp(2yr) W,(r) (33) 

a result which is well known and due to Schwinger (1961). The next iteration gives 

W,(r) = -Ir ds exp(-2ys)V(s) 

(6) Choose y = 0 and a ( r )  =constant x r - ' ,  then w ( r )  = (21 + l ) / r ;  we obtain first 
a3 

nr (0 )  s lom drWi0r2' Wl(r)= - J, ds ~ ~ l V ( s )  
(21 + 1) (35) 

The second iteration improves a result of Chadan and Martin (1980): 

2 "  
nr(0) s 21+1 lo dr r41t1 W :  ( r ) .  (36) 

Remark. It is interesting to note that the choice CL = w 2  with w being a solution of 

(37) 
2a '  

w'+-w = v 
U 

in equation (27) also leads to the Schrodinger equation for angular momentum 1 and 
energy -y  , This time Tr K"' turns out to be identical to the Bargmann bound ( p  = 1 
of equation (13)), although the Birman-Schwinger technique is not applicable directly 
because K"' does not depend linearly on V. 
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Appendix 

Assuming that the integral I defined in equation (11) is finite, we show first that U,(r) 
given by equation ( 5 )  is bounded for all r by 21. From the definitions we get 

00 00 

IU,(r)l s 1, dtc+-'((t) IC du (+*(u)IV(u)l. (A l l  
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Then using the fact that I ( T ( u ) ~  is monotonically decreasing gives 
m m  

1 U, (r)/  dr It du I V(u 11. 

Exchanging integrations and binding r by U gives the result we are seeking: 
m 

\ U u ( r ) l s 2  Ir du u(V(u) /<21.  

Next we would like to prove the finiteness of the integral J defined in equation 
(12). Inserting all definitions gives 

m 03 2 

J = Io dr exp(-2UU(r))F2(r)  lord[ exp(2Ui,(r))(~-~(t)(  du r 2 ( u j V ( u ) )  . (A4) 

Using (A3) and also the monotonicity of Iv(r)l allows us to get rid of all the (T 

dependence: 
53 m W 

J s exp(41) lo dr r du V(u)  1, dv V(v) .  

Exchanging integrations and performing the r integration leads finally to the 

J s exp(4111~ (-46) 

inequality 

which implies finiteness of J if I is finite. 

Note added in proof. D B Pearson (1979 Helv. Phys. Acta 52 541) has performed related work on a 
different, but connected, class of potential. There is, in fact, some similarity between Pearson's approach 
for scattering and our approach for bound states. 
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